
Introduction

In this article we present the Z++ abstractions for the marriage of relational database and
object-orientation. A happy marriage necessitated the compromise of confining Z++ to
the Data Manipulation Language (DML) of SQL standard.

The Data Definition Language (DDL) deals with system-level operations, relatively
speaking. These operations are generally performed by system administrators who utilize
specialized interfacing programs provided by vendors of database systems.

An application, on the other hand, needs to access or manipulate the data in an existing
database. We are using the term application relative to a database system. In that sense an
application should use an existing database, not to create one, nor to modify the schema
of an existing database.

The design of language should be based on a verifiable conceptual model. In the next
section we introduce the Z++ model for database statements. In order to simplify the
discussion, we review a few details that Z++ standard library automates.

Preliminaries

Database operations require establishing a session, which includes connecting to the
server and logging in, and at some point ending the session. These operations have been
abstracted away through declaring a database object. At elaboration a session is
established, which terminates when the object goes out of scope.

The Z++ type of database object is defined in the system include file database.h. All
operations are implemented in the standard static library. However, beyond a plain
declaration, there is no need to be aware of the details of the methods that the database
system type defines. All methods are used internally by, the Z++ compiler.

In the statements presented in the next section, a database-object refers to an instance of
database class in the include file database.h, that one declares before interacting with a
database system. The declarations require standard arguments, such as user-name and
password, as shown below.

databaseType Dbase(IP-address, port, database-name);
databaseUserType Duser(Dbase, user-name, password);

The first declaration provides the data needed for the second declaration. It is the second
declaration of type databaseUserType, which the Z++ database statements use. A
session begins with the second declaration, as well.

The Model

Z++ is an object-oriented superset of C++, which supports templates for defining
containers such as list abstract data type. Prior to its use, a template must be instantiated

with a specific type. In this article we will refer to the type of object instantiating a
template as the catalyzer.

The purpose of executing the SQL select statement is to receive a set of records from a
database. A natural way to manipulate the set of records obtained from a query is to copy
them to an instance of catalyzer and insert them into the container. Let us refer to the
process of copying a record to an instance of a catalyzer (and vice versa) as mapping.

The Z++ select statement combines the following: full support for an SQL query, the
specification of a template and a catalyzer, and a mapping of database fields to members
of the catalyzer. It further allows specifying the container method for inserting instances
of catalyzer into the container.

The basic model as described for the select statement remains the same for other Z++
SQL statements, presented next.

The Select Statement

The syntax of Z++ select statement is similar to the SQL select statement. Keywords are
shown in blue. All punctuation is part of the syntax, except the meta-symbols []. The
brackets [] indicate zero or more occurrences (the Kleene star operator).

databaseSelect<user_object, catalyzer_type : table_name [, table_name]>
 table_name.field_name<catalyzer_member>
 [,tab
 where (boolean_expression)

le_name.field_name<catalyzer_member>]

 using conatainer_instance, container_method
;

The user_object is an instance of type databaseUserType, which we discussed earlier.
The catalyzer_type is type of a Z++ object used in mapping. The mapping is defined via
the expressions “table_name.field_name<catalyzer_member>”, where table_name is
name of one of the tables listed after the colon.

Note that, names of tables and fields are those that one would directly submit to an SQL
statement. In other words, the strings are not Z++ identifiers that evaluate to those names.
Rather, they are the names.

The expression for “where” can contain mixture of database fields and Z++ objects.
Literals can be used directly. However, a Z++ expression must be enclosed between {}.
The expression, of any complexity, will be evaluated and passed to the database at run
time. The type of expression must be one of Z++ fundamental types of numeric or string.

The arguments to the using phrase are an instance of container to be populated, and the
method of the container template to be used for populating it. The container is to be
instantiated with the type of the catalyzer.

The semantics is that, upon the execution of the select statement, the result of the
query will populate the container-instance using the specified container method, and
the mapping defined via the catalyzer.

Other statements

The remaining statements are syntactically analogous to the select statement. However,
unlike select statement, they are generally intended for use in a loop. Note that the select
statement does not require a loop.

The statements resemble, and behave like their corresponding SQL statements. Below is
the insert statement. The compiler transforms the following to an SQL insert for the
catalyzer-object in the using phrase of the statement. Thus, in a loop where the catalyzer
is ranging over objects in a container, one can simply check on the state of the catalyzer
in order to decide whether or not to execute the insert statement on it.

databaseInsert<user_object, catalyzer_type : table_name>
 table_name.field_name<catalyzer_member>
 [,tab
 using catalyzer_object

le_name.field_name<catalyzer_member>]

;

The remove statement is similar to the insert statement, except it allows a where-
expression, which is sent to the database for evaluation. As in the case of insert, one can
also check on the values of members of catalyzer in order to decide whether or not to
execute the remove statement. This applies to update statement, as well.

Note that remove and update do not have a using clause. In case of insert, the statement
uses the catalyzer object for inserting a row, which is why it has a using phrase.

databaseRemove<user_object, catalyzer_type : table_name>
 table_name.field_name<catalyzer_member>
 [,tab
 where (boolean_expression)

le_name.field_name<catalyzer_member>]

;

The update statement includes a set-expression, which it sends to the database. A set-
expression can include Z++ expressions just like the where-expression. The syntax of set
expression is the same as SQL set. Z++ expressions for values of fields need to be
enclosed in curly brackets {}, as they do for where-expression. Literal values can be used
directly, without the use of {}.

databaseUpdate<user_object, catalyzer_type : table_name>
 table_name.field_name<catalyzer_member>
 [,t
 set set-expression

able_name.field_name<catalyzer_member>]

 where (boolean_expression)
;

Fetch Size

The constructor of databaseUserType has two optional parameters: an integer for size of
fetch, and a string for IP-address of a database proxy.

The select statement uses the fetch size for an initial fetch. If this parameter is 0 (the
default value), select will fetch the entire set of rows and insert them in the container
object. For any other positive integer n, select will only fetch n rows and insert them in
container. The remaining rows can be fetched using the fetch expression, shown below.
Fetch expression is identical to select statement except for lacking the where-clause.

databaseFetch<user_object, catalyzer_type : table_name [, table_name]>
 table_name.field_name<catalyzer_member>
 [,table_name.field_name<catalyzer_member>]
 using conatainer_instance, container_method
;

The fetch expression returns true so long as there are more rows to fetch. On each
execution the fetch expression will fetch n rows where n is the value of parameter for
fetch size, or fewer if the result of query has fewer rows left.

If all rows in the result of a query are fetched, the Z47 processor automatically performs
the necessary cleanup. However, when the fetch expression is used, it is likely that one
may choose to stop fetching before all rows are received. In that case it is necessary to do
the cleanup manually. The database free statement is quite simple and does just that.

databaseFree<user_object>

The single argument to the database free statement is the same as the first argument to all
other database statements.

Database Proxy

The Z++ Internet Server includes a proxy for database operations, among other services
for distributed computing. The proxy is useful for mobile devices. However, some
desktop applications may also utilize it for efficiency.

The important fact about the design is that the Z++ application using database statements
does not need to be modified when switching back and forth between using a proxy, or
not. The intent to use a proxy is indicated by supplying one more argument to the
constructor of the database object of type databaseUserType. This argument is the IP-
address of a Z++ Internet Server. The compiler does the rest of the work.

Exceptions

The following exceptions could be raised when declaring a database object, i.e. an
instance of databaseUserType.

_EXCEPTION_DATABASE_UnsupportedDatabaseKind
_EXCEPTION_DATABASE_LibraryInitializationFailed
_EXCEPTION_DATABASE_ConnectionToServerFailed

The following exceptions can occur when carrying out an SQL statement. The first three
exceptions are related to the select statement. The fetch exception could also occur when
executing an explicit fetch-statement.

_EXCEPTION_DATABASE_SelectQueryFailed
_EXCEPTION_DATABASE_InsufficientMemoryForQueryResult
_EXCEPTION_DATABASE_FetchFailed

_EXCEPTION_DATABASE_InsertRequestFailed
_EXCEPTION_DATABASE_UpdateRequestFailed
_EXCEPTION_DATABASE_RemoveRequestFailed

Conclusion

The speed of execution is not a concern. In fact, if the database server responds fast, the
select statement can receive hundreds of rows in a blink, over the Internet. This makes
the other features of the model practically useful.

The model automates exchange of data between Z++ objects and database. The
mechanism for this automation is quite intuitive. The mapping, in particular, is a simple
list of fields of tables and their images as members of the catalyzer.

The model also automates the establishing of a session, and ending the session. A session
begins with the declaration of an instance of databaseUserType and ends when the
instance goes out of scope, or in case of dynamic objects when they are deleted. Thus,
each Z++ thread can have multiple concurrent sessions with any number of databases.

An interesting fact is that SQL makes database systems platform independent, in a
manner of speaking. Thus, a Z++ application can concurrently engage with multiple
databases from different vendors.

Last but not the least, is the similarity of the statements to their SQL counterparts. Thus,
instead of encoding and resorting to innovative programming tricks, an engineer uses
familiar linguistic patterns. Finally, the use of proxy for communicating with a database
server does not require code change beyond one intuitive argument to the constructor of
the database object, the IP-address of the proxy.

Generally, models other than the one presented in this article are limited to a few specific
platforms. In particular, the formulation illustrated in this article is a permanent pattern
with clear semantics. In contrast, the use of other models, such as class libraries, requires
continual maintenance resulting from library upgrades.

The database statements presented here are accompanied with a number of exceptions.
The Z++ resumption capability provides a simple model for handling or correcting
exceptional situations when dealing with complex database applications.

	Preliminaries
	The Model
	The Select Statement
	Other statements
	Fetch Size
	Database Proxy
	Exceptions
	Conclusion

