
Exception Model

A car can be considered a correct piece of work. However, a car needs a driver to steer it
in order to avoid disasters while performing its function. A software application could be
a correct implementation of proven algorithms. However, during execution the program
may face many practical challenges.

The set of linguistic mechanisms analogous to the steering wheel and pedals of a car are
essential characteristics of a programming language. Paramount among such mechanisms
is exception handling. A rudimentary mechanism for exception handling, as is the case
with C++, deprives an engineer from controlling the execution of a program in a manner
similar to asking a driver to operate a car without brakes.

In this note, we discuss the Z++ exception model and its advantages over the C++ model.

The disadvantages of C++ Model

The primary purpose of catching an exception is to handle it. There are two distinct
notions of handling a none-fatal exception. In the context of Z++, the weak form of
recovery from a handled exception is called resumption, and the stronger form is called
repetition.

An exception model supporting resumption is useful in providing diagnostics, and then
continuing the execution of the program at the statement immediately following the one
that caused the exception.

In C++ model, one should avoid statements following a statement that may throw an
exception. This is because the reason for having a throw is the possibility that an
exception may occur. Should that happen, the statements following it in a C++ try block
will be skipped, and there is no way to get back to them. The only reasonable thing to do
is to put all those statements after the try-catch construct, effectively reducing the try
block to statements that may throw exceptions.

Repetition allows repairing the cause of exception, perhaps by having user do something,
and then trying the statement that caused the exception, over again. The C++ model is
hopeless for this form of handling exceptions.

In the next section we illustrate the Z++ exception model. It is interesting to note that the
C++ object-oriented model is quite costly. After all, exception objects must be created,
copied, and destroyed.

Exception Layer

The notion of exception is associated with circles or layers, and handlers at each layer.
C++ uses the terminology of try and catch for its object-oriented exception mechanism.

Z++ maintains the classic terminology while providing a more intuitive and expressive
apparatus for exception mechanism.

The Z++ linguistic construct is “layer … handler … endlayer”, as shown below.

#include<exception.h>
using namespace exceptionSpace;

layer<exceptionType>

// statements that may raise exception are here

handler // (catching) handling exception

 case exceptionValue:
 // handle this exception

// more cases

endlayer;

The section between layer and handler corresponds to the C++ section between try and
catch. The handler section extends until the closing tag endlayer.

Z++ allows extending an enumeration type somewhat like derivation of classes. The
extended enumeration type will include the literals of its base. Z++ exceptions are of
enumeration type. The header file “exception.h” defines the type exceptionType, which
includes exceptions raised by the system, such as division by zero. Users define new
exceptions by extending exceptionType.

The argument to layer is an exception type. The handler section permits only cases for
exceptions of the type passed to the layer. The object-oriented version of C++ is neither
more expressive, nor does it improve on this approach in any useful way.

Resumption

Z++ provides two notions of resumption (handling a none-fatal exception), namely repeat
and resume. The statements repeat and resume can only appear in the handler section of a
layer statement, and their target is the section between “layer … handler” of that same
layer statement.

The Z++ repeat statement sends control back to the statement that caused the exception.
One uses the repeat statement when the cause of an exception can be repaired, and
the statement that originally caused the exception can be re-executed. Often times
this is the scenario that one faces.

There are times that the cause of an exception either cannot be repaired, or the repair is
not necessary. In such cases, possibly after logging some information, one wishes to
continue executing the statements following the one that caused the exception. The Z++

resume statement sends control back to the statement following the one that caused the
exception, precisely what one would like to happen.

Conclusion

The C++ object-oriented formulation of the notion of exception mechanism does not
introduce any practically useful novelty. On the other hand, Z++ exception mechanism is
complete for all practical purposes. Both languages allow extending exceptions.
However, the C++ object-oriented model is expensive because exception objects must be
created and destroyed, and perhaps copied.

In addition, Z++ compiler chases exceptions in order to ensure that uncaught exceptions
will not result in unforeseen disasters.

	The disadvantages of C++ Model
	Exception Layer
	Resumption
	Conclusion

