
Z++ Language Syntax Chart

Early revisions take most of C++ subset for granted. In later revisions more Z++ rules

will be presented. Eventually, the C++ subset will be included as well.

Preliminaries. Two meta-symbols are used. The meta-symbol =#= separates the left and

right hand sides of a rule. Meta-symbol # separates the choices on the right-hand-side of a

rule. All other symbols appearing on the right-hand-side of a rule are part of the syntax.

Non-terminals are shown in italic. A bold italic item indicates a relative-terminal in that

the reader will be able to think of possible terminals at that point. A numeric expression

is an example of a relative-terminal item.

Keywords are shown in bold.

An underlined item indicates that the item is optional, meaning 0 or 1 instance of the item

can appear at that location. It is also used in recursive rules.

As an aid to readability, the above conventions are enhanced with color-coding.

Keywords are colored blue.

A relative-terminal is colored green.

All symbols, including operators are colored red, like {}.

Links to the start of rules for each category

Preprocessing

Reserved Words

Operators

Fundamental Types

Control Structures

Enumeration

Collection

Exceptions

Signaling

Tell-Hear Distributed Signals

Class

Task

Frame

Union

Method Prototype

Global Function Prototype

Template

Namespace

Travel statement for Strong Mobility

Database SQL Statements

Atomic Sequence

Debug Break and Block

Preprocessing

Notes. Z++ preprocessor provides a simple mechanism for conditional compilation. Text

substitution and macro expansion transform programs prior to compilation thereby

distorting abstractions. Z++ macros can be debugged just like functions. Z++

preprocessor identifiers are not processed in any way. Instead, all preprocessor

identifiers are simply removed prior to compilation.

All preprocessor commands are tagged with the symbol # as in C++. There are no

preprocessor operators for negation or other logical operations.

preprocess =#= inclusion # definition # conditional # macro-def

inclusion =#= include include-operand

include-operand =#= “ file-path “ # < file-path >

Notes. When quotes are used, compiler will search for the file relative to current

directory, unless full-path is given. The angle brackets are for paths known to the

compiler, such as system header files.

definition =#= define identifier # undef identifier

Notes. The argument of a define tests true until undef is applied to it.

All unseen identifiers will test false.

conditional =#= conditional-head statements conditional-legs endif

conditional-head =#= if identifier # ifnot identifier

Note. The preprocessor command ifnot is a single word.

conditional-legs =#= preproc-elsif-sequence else statements

preproc-elsif-sequence =#= preproc-elsif-head statements preproc-elsif-sequence

preproc-elsif-head =#= elsif identifier # elsifnot identifier

Note. The preprocessor commands elsif and elsifnot are single words.

macro-def =#= macro macro-header macro-body endmacro

Note 1. Reserved words macro and endmacro are preprocessor commands and must be

preceded with the preprocessor symbol #. The command #endmacro must appear on a

line by itself at end of macro definition.

Note 2. The body of a macro in Z++ is defined like a function body using multiple

lines, without the continuation character.

Note 3. Declaration of local objects is allowed in macros.

Note 4. Except for inclusion, other preprocessor commands are allowed in the body of a

macro. However, definition of macros cannot be nested just like function definitions.

Note 5. Macro and function calls can be nested arbitrarily.

Note 6. Bodies of macros can be debugged just like functions.

Language Reserved Words

The following are all the Z++ keywords in alphabetic order.

accepts, atomic, boolean, break, canvas, case, cast, char, class, collection, common,

const, continue, databaseFetch, databaseFree, databaseInsert, databaseRemove,

databaseSelect, databaseUpdate, debug, delete, destroy, do, double, else, elsif, end,

endatomic, enddebug, endif, enddo, endfor, endlayer, endselect, endscope, endspace,

endswitch, endusing, endwhile, entry, enum, extern, external, float, for, frame, friend,

from, generated, handler, hear, hears, if, implementation, inline, invariant, int, layer,

local, long, menu, menubar, mutex, namespace, new, operator, pattern, persistent, private,

protected, public, raise, remote, repeat, resume, return, scope, self, select, set, setchar,

shared, short, signal, size, string, struct, switch, substr, task, tell, template, thread, throws,

travel, type, typedef, uchar, uint, ulong, union, ushort, using, visible, void, where, while.

Operators

Notes. All operators that make sense may be overloaded. The compiler generates

diagnostic messages when an operator cannot be overloaded.

Operator overloading extends to arrays. That is, when an operator is overloaded for a

class, it can be applied to an array of that class. The Z++ compiler generates the code to

apply the operator to each cell of the array.

Specialized operators associated with specific types are illustrated at those types.

Scope Operator

:: resolution operator for namespace, enumeration and method definitions

Structure Operators

. member/method selector

-> pointer member/method selector

:: base (and base member/method) selector

->> pointer base selector

:= frame to GUI canvas association

Pointer Operators

* pointer de-reference

& take address

() pointer casting

Note. Pointer arithmetic is the same as in C++.

Arithmetic Operators (binary and assignment)

= assignment

+ += add

- -= subtract

* *= multiply

/ /= divide

% %= modulus (remainder)

*^ *^= exponent (raising to a power)

& &= bit-wise and

| |= bit-wise or

^ ^= bit-wise exclusive or

<< <<= shift-left

>> >>= shift-right

Unary Arithmetic Operators

+ no action

- change sign

~ invert bits

++ increment (enumeration successor)

-- decrement (enumeration predecessor)

Notes. Only for overloading purposes, the postscript versions of increment operator ++

and the decrement operator –- use the operator forms +@ and -@. The C++ solution is to

assume an integer type argument. Note that these operators are only used in defining a

class (and its methods). When applying the operators use the standard forms ++ and --.

Logical Operators

! negation

&& short and (same as C++)

|| short or (same as C++)

<> long and (both operands are evaluated)

>< long or (both operands are evaluated)

^^ exclusive or (both operands are evaluated)

Relational Operators

== equal

!= unequal

< less than

<= less than or equal

> greater than

>= greater than or equal

Signaling Operators

<- send a signal

? receive a signal

GUI Operators

$ draw/erase toggle operator

? test whether GUI object is showing

~ clear operator (field contents etc)

<- GUI event generator

[] GUI list element selector

<< GUI output (same for sockets and streams)

>> GUI input (same for sockets and streams)

Other Operators

[] array index, enumeration numeric value, collection member

.. range operator (as in ADA)

, sequence operator

?: conditional operator (same as C++)

|- conversion operator

Note. The conversion operator is binary. It converts the right operand to its left operand.

One operand must be string, and the other a numeric type. Thus, the conversion operator

simply converts numeric types to ASCII, and vice versa.

The conversion operator returns the result of conversion, so it can be used as argument to

function calls.

Operator cast

cast operator is the Z++ general casting mechanism. The syntax is as follows.

cast (result-type, object)

The cast operator returns an object of type result-type without changing its argument. If

the argument object is const, the above statement will drop the const. To maintain the

const, or just make the result of cast a const, use the following.

cast (const result-type, object)

Notes. When casting pointers in a derivation, the cast operator will perform a downcast,

and an up-cast, in that order, using depth-first search. In fact, in a multiple-inheritance,

one can cast a pointer to one base to a pointer to another base of the same object.

The C++ casting () is supported for pointers only.

A constructor taking one argument is a cast, as in double(2).

Operator size

The size operator applied to a string object returns the size of the string. The return

object is of type int. The following is an example.

string name = “Mozart”;

int length = size(name); //sets length to 6

The size operator is also applicable to dynamic arrays. Here is an example.

int m = 5, n = 7;

// m and n may change before we reach the next line

double array[m][n]; // two-dimensional dynamic array

int first = size(array, 0); // size of first dimension -- m

int second = size(array, 1); // size of second dimension -- n

Operator new

The new operator is the same as in C++, with some correction and extension. Consider

the following.

int * p = new int[m];

Unlike C++, the above is an error in that the type returned by the new operator is not a

plain integer pointer. The actual type is a pointer to a dynamic array of integers. By

dynamic we mean that the value of m is unknown at compile time.

First, we need to define a type for a degenerate dynamic array of integers. Note that the

order of typedef is the reverse of that of C++. The typedef name below is degenIntArray.

typedef degenIntArray int[];

degenIntArray * p = new int[m]; // this is fine

When constants are used for array indices, the types on both sides must match exactly.

That is, degenerate arrays cannot be used.

typedef IntArrayPointer int[20]*;

IntArrayPointer q = new int[20];

Z++ also extends the new operator so general constructors can be called on array cells at

time of construction. The following example illustrates the simplicity of Z++

expressiveness.

new my_array_type[m][n](x, y, z);

Operator delete

The delete operator is the same as in C++, except Z++ does not allow the use of brackets,

as in “delete []”. This is a consequence of correcting the semantics of new operator.

Fundamental Types

All C++ built-in types are supported. Z++ does not use the term unsigned. Instead, the

letter u is used as a prefix, as in ulong for unsigned long.

In Z++ instances of any type are objects. However, unlike Eiffel in Z++ one cannot

derive from the fundamental types, as there is no point in doing so. On the other hand,

unlike C++ there are no l-value and r-value. An object is an object regardless of the

side on which it happens to be.

The following are also Z++ fundamental types.

Boolean. The compiler predefines the objects True and False of type boolean. Among

other things, they can be used for initializing other objects, as follows.

boolean young = False, old = True;

Objects of type boolean cannot be mixed with objects of numeric types. However, the

logical negation operator can be applied to pointers. The result is True exactly when the

pointer is null.

String. The type string is fundamental. The language provides direct support for

common operations, and the string library extends the support.

Operators + and += are string concatenation operators.

Operator size returns the length (number of characters) of an object of type string.

The Z++ string library uses the low-level operators substr and setchar to provide all the

needed functions with familiar syntax.

Mutex. The type mutex is fundamental Z++ type. An instance of mutex can be defined

as usual, and as pointer, as shown below.

mutex mtx;

mutex* mtxptr = new mutex;

delete mtxptr; // after use

Instances of type mutex can be passed to calls. Operator ++ locks a mutex while operator

-- unlocks it.

Constructs for Structured Programming

Notes. All Z++ control structures have a closing tag, and do not require the use of braces.

However, braces are allowed for opening additional scopes.

The type boolean is a fundamental type. Therefore, a boolean expression cannot be

mixed with a numeric expression.

The Z++ compiler predefines two instances of type boolean, True and False.

All C++ boolean operators retain their semantics in Z++. A boolean operator is short

when its right-hand-side operand is not evaluated unless needed. A long boolean operator

means that both operands of the operator are evaluated before evaluating the result of the

operator. The C++ operators || && are short, as they are in Z++. However, Z++ provides

the following additional boolean operators.

^^ long exclusive or (there is no short boolean exclusive or).

<> long and.

>< long or.

Z++ allows chaining of relational operators as it is done in mathematics. Thus, the

expression (v < x == y <= z) will be interpreted in its usual sense.

control-structure =#= selection # iteration

selection =#= if-statement # switch-statement # conditional-statement

if-statement =#= if (boolean-expression) statements leg-sequence endif ;

leg-sequence =#= elsif-sequence else-leg

elsif-sequence =#= elsif (boolean-expression) statements elsif-sequence

Note. The Z++ elsif keyword is similar to that of ADA.

else-leg =#= else statements

switch-statement =#= switch (expression) switch-details endswitch ;

switch-details =#= statements case-else-segment

Notes. Z++ switch construct allows statements before the first case leg. Furthermore,

objects created here are available within the scope of cases and the else leg. However

objects created in each leg are only available within the scope of that leg.

Since string is a built-in type, case labels can also be string literals.

case-else-segment =#= case-sequence else-leg

case-sequence =#= case-leg case-sequence

case-leg =#= case case-labels : statements

case-labels =#= label-sequence # label-range

label-sequence =#= label-literal , label-sequence

Note. A single literal is also a sequence.

label-range =#= label-literal .. label-literal

else-leg =#= else statements

Notes. Sequence and range are similar to that of ADA. Z++ does not use break for

selections (only for iterations). However, one may assume an invisible break for each

case. Thus, a case leg without any statements does not fall through to the next case leg.

conditional-statement =#= boolean-expression ? expression : expression ;

Notes. There are two differences between Z++ and C++. First, the Z++ compiler requires

that the two expressions result in an object of the same type. Second, the result of the

statement is an object in that it is possible to invoke methods on it (enclose the entire

statement within parentheses).

iteration =#= for-loop # while-loop # do-loop

Notes. The keywords break and continue retain their C++ semantics.

for-loop =#= for for-details endfor ;

for-details =#= See remark below.

Notes. The syntax and semantics of the Z++ for-loop is identical to that of C++, except

for the closing tag endfor and the lack of braces for the body of the loop.

while-loop =#= while (boolean-expression) statements endwhile ;

Notes. The boolean expression for a while-loop is evaluated prior to entering the loop

body. This is the opposite of the do-loop below.

do-loop =#= do statements enddo (boolean-expression) ;

Notes. Note that the boolean expression and its surrounding parentheses are underlined,

meaning that it is optional. When the boolean expression is left out the do-loop becomes

a simple infinite loop.

The boolean expression, if present, is evaluated after all the statements in the loop have

been executed. Thus, the do-loop will always execute at least once.

Note. A do-loop ends when its boolean expression evaluates true. This is the opposite

of a while-loop, which iterates so long as its boolean expression evaluates true.

Enumeration

enum-type =#= enum enum-identifier enum-details ;

enum-details =#= enum-extension { enum-value-list }

enum-extension =#= : enum-type-identifier

Notes. The values of the enumeration type being defined will follow those of the type

being extended, i.e. enum-type-identifier.

The type being extended is also called a base for the new (extended) type.

enum-value-list =#= enum-literal = int-literal , enum-value-list

Note. int-literal is an integer numeric literal.

enum-literal =#= _identifier

Notes. An enumeration literal must start with an underscore character ‘_’. Regular Z++

identifiers cannot start with underscore.

The literals of an enumeration type are private to the type in that the same literal can be

used in defining other enumeration types. When compiler reports ambiguous for a

particular literal, qualify the literal with its type, as in type-name::literal.

Exceptions and signals are of enumeration types defined in Z++ system header files.

A user-defined exception type or signal type is simply an extension of these system

types.

Enumeration operators. The type constructor enumeration provides operators for

recurring operations.

Operator :: is for ambiguity resolution of literals, as mentioned in the notes above.

Operator [] when applied to an enumeration object/literal evaluates to the integer value

associated with that object/literal. For instance, [some_literal] returns an int value.

Operator [] when applied to an enumeration type evaluates to the least enumeration

literal of the type. Note that, the operand is a type (not object or literal) and that the result

is an enumeration literal (not an integer).

Operator [[]] evaluates to the largest enumeration literal of the type to which it is applied.

That is, the operand is an enumeration type, such as [[my_enum_type]], and the result is

the largest enumeration literal value of my_enum_type.

Operator ++ is the successor function. When applied to an object of type enumeration it

increments the objects values to the next enumeration literal for the type of object.

Operator -- is the predecessor function and is analogous to ++.

Collection

Note. Collection is a type constructor. It can be viewed as extending the type constructor

enumeration where the values associated with enumeration literals are instances of

classes instead of integers.

In addition, collection can have methods. In particular, shared methods of a

collection invoke identical methods of each of the classes associated with the

collection. This allows invoking methods on a set of objects whose classes are not

related through inheritance.

collection-type =#= collection collection-identifier < enum-type > collection-details ;

Note. enum-type is name of a previously defined enumeration type.

collection-details =#= collection-derivation { collection-body } ;

collection-derivation =#= : collection-identifier

Note. collection-identifier in this context is name of a previously defined collection type

from which the new collection is being derived. Derivation is only public and cannot be

specified. Furthermore, derivation is linear (single inheritance).

Note. When deriving collections, the associated enumeration type of the derived

collection must be an extension of the associated enumeration type of its base.

collection-body =#= collection-values collection-member-section

collection-values =#= enum-literal < class-type > , enum-literal < class-type >

Note. enum-literal is a literal of enum-type associated with collection, as in first rule

above. The list is comma separated and must cover all literals of enumeration type. Each

literal is associated with a previously defined class. At elaboration, each enumeration

literal receives an instance of its associated class for its value.

collection-member-section =#= access # collection-methods # shared-methods

access =#= private : # protected : # public : # shared :

Note. Access kind shared can only be specified once as starting shared section. Its scope

extends to end of definition of collection. The access of shared methods within the shared

section, as public or private, will be whatever it was before the keyword shared was

seen, and can also be changed within the shared section.

Note. Methods specified within shared section must be methods of each of the classes

used for values of collection. When a new collection is derived from a collection that has

shared method, the new classes of derived collection must have the shared methods of

base collection. This is because when a shared method is invoked on an instance of

collection, it is applied to all instances of classes, including the ones of the derived

collection.

Note. When deriving new collections, the derived collection can introduce new shared

methods. However, the new shared method will only be called on the new values

(classes) of the derived collection.

Note. The body of a shared method is generated by, the compiler. Furthermore, a shared

method of base does not need to be specified again in a derived collection.

Example. Consider the following enumeration and classes.

enum shapes {_square, _circle};

class Square

 // members, methods

public:

 // constructors etc.

 int length(void);

 double showArea(void);

end;

class Circle

 // members, methods

public:

 // constructors etc.

 double showArea(void);

end;

Now, we define a collection named MyShapes.

collection MySahpes<shapes> {

 _square<Square>,

 _circle<Circle>

// constructors etc.

 void print(void); // default access is public

shared: // shared section extends to end of definition

 double showArea(void);

};

Note. The return object of a shared method is the object returned by invoking the method

of the last value of the collection. In the above example, the shared method showArea()

will return the double returned by the showArea() of instance of Circle.

Note. Inside the body of a method of a collection, the keyword self references the object

itself, as it does for classes.

Note. An instance of a collection has an implicit tag. Initially the tag points to the first

value (instance of class). The tag can be accessed, as well as set, as in the following

example. In particular, the successor and predecessor functions work the same way as

they do for enumeration.

Note. The array brackets behave similarly for collections, also illustrated in the following

example. This allows invoking methods on instances of classes that are values of a

collection.

Example. Using previous example in this section.

[MyShapes] = _circle; // set the tag to point to Circle

MyShapes--; // now tag points to Square

MyShapes[_square].length(); // invoke a method of Square

void MyShapes::print(void) // definition of collection method

 switch([self]) // self refers to collection object

 case _square:

 output << “My tag is at Square\n”;

 case _circle:

 output << “My tag is at Circle\n”;

 endswitch;

end;

Exception

exception-statement =#= layer-statement # raise-statement # resume-statement

layer-statement =#= exception-head statements handler-section endlayer ;

Notes. Z++ does not use the C++ keywords try and catch.

exception-head =#= layer < exception-type >

Notes. The exception-literals that appear as case labels of the handler section must be of

the type exception-type specified for the layer.

Exceptions are of enumeration type. New exception types are defined by extending

system exception type.

handler-section =#= handler handler-details

Note. The handler-details is same as case-else-segment of switch statement except labels

must be of an exception type.

raise-statement =#= raise exception-literal ;

Note. The raise statement is equivalent to C++ throw.

resume-statement =#= resume # repeat ;

Notes. The resume and repeat statements can only appear in handler-section.

Repeat returns control to the start of the statement that caused the exception.

Resume returns control to the statement following the one that caused the exception.

Generally, use repeat when the cause of exception can be repaired and the operation can

start over. On the other hand, use resume when logging or posting messages about a

failure, and continue the operation without performing the action that caused the

exception.

Signaling

Notes. The keyword signal is used for generating a signal within an executing program,

as well as catching the desired signals. In the following rules the expression must

evaluate to a signal-literal.

User-defined signals are of enumeration type extending system signals.

signal-statement =#= generate-signal # catch-signal

generate-signal =#= signal <- expression ;

Note. The symbol <- is backwards form of C++ (and Z++) symbol for pointer

dereferencing. This statement generates the signal resulting from expression. The Z++

virtual processor will keep the signal until it is delivered to its destination.

catch-signal =#= signal ? expression

Notes. catch-signal is a boolean expression.

A thread uses the catch-signal expression to wait until Z47 Processor delivers the signal

to it. The expression catch-signal remains false until the expected signal is generated. At

that time, Z47 Processor removes the signal from the context of the process and sets the

catch-signal expression to true.

Processes and their threads can communicate to one another by sending different user-

defined signals. Z++ has various categories of signals discussed below.

All categories of signals are defined in Z++ system header file. User-defined signals of

each kind are defined by extending the relevant category in system header file.

signal-category =#= process-signal # node-signal

process-signal =#= plain-process-signal # entire-process-signal

node-signal =#= plain-node-signal # entire-node-signal

The above rules show four categories of signals.

A process-signal, or process-bounded signal is for signaling among threads of a single

process. Only threads of the process that generates this kind of signal can catch it.

A node-signal or node-bounded signal is for signaling among process running on same

Z47 Processor. For signaling among processes running on different Z47 Processors see

Tell-Hear signals. All processes, including the process that generated the signal can catch

the signal. This is useful for communication among threads of different processes.

A plain signal, either process-bounded or node-bounded can only be caught once, as first

come first serve. Once caught the signal is removed from the Z47 Processor queue.

Catching an entire signal, process-bounded or node-bounded requires registration, which

will be discussed shortly. An entire signal is delivered to all threads or processes that

have registered to receive the signal prior to removing it from the Z47 Processor queue.

Note. A process-bounded entire signal can be caught by, all threads of the process that

generated it, except the main startup thread of the process.

Catching an entire signal requires registration for accepting the signal. A thread or

process registers the signals it desires to be delivered to it with Z47 Processor via its

accepts-specification.

accepts-specification =#= accepts (sig)

A global thread registers its accept signal as shown below.

void MyGlobalThread(void)<thread> accepts(_sig);

For a process, use the accept specification at its entry point. Since a process can have any

number of entry points, the signals registered will depend on the entry point invoked.

Registration of entire signals for task threads is discussed at task-accepts.

Tell -Hear Distributed Signals

Note. Tell-Hear mechanism is an abstraction for a distributed model of Concurrent

Communicating Processes. The signaling mechanism of Z++ is extended for

asynchronous communication among distributed processes. These signals can also carry

data along to their remote (or local) destinations.

Note. User-defined tell-hear signals are derived from Z++ base type the same way as

other user-defined signals are derived (enumeration extension).

In the rules below, tell-side is for statements that the sender of a signal would execute,

and hear-side are statements that the recipient would execute.

tell-hear =#= tell-side # hear-side

tell-side =#= tell <- tell-details ;

Note. These signals use the keyword tell instead of signal for generating a signal.

However the operator is the same. The idea is that a process is telling something to

another process that it expects to hear it.

tell-details =#= sig tell-destination : tell-data

Note. The none-terminal sig is a user-defined signal. Tell-destination and tell-data are

optional. The separator colon is only needed when tell-data are present.

tell-destination =#= $ node-destination , process-destination

Note. Separator $ precedes node-destination and separator comma precedes process-

destination. Since both destinations are optional their separators are present only when

their expressions are. Both destinations are of type string.

Note. A node-destination is a URL. A process-destination is the name of process at target

node. This is simply the name of the application without the extension ZXE.

Note. Without a URL, Z47 Processor assumes itself. That is, the signal is considered for

local delivery.

Note. The name of a process, that is the argument process-destination, is only useful

when there is a possibility that two different processes may have registered to catch the

same signal. In that case, without specifying the name, the first process that catches the

signal will serve it, and the other process will not hear the signal.

tell-data =#= object , more-tell-data

more-tell-data =#= object , more-tell-data

Note. Tell-data is a comma-separated list of objects. The types of these objects are

specified in hears-specification, which we discuss next. That is, for each signal one

specifies the types of objects to be received along with the signal so the compiler can

verify objects of correct type, and in correct order are attached to that signal. This is the

same as type checking the signature of a function call, in this case the check is done when

the tell statement is parsed.

Now we discuss the hear-side. A tell-hear signal (or for short we may say tell signal or

hear signal depending on context) requires registration. The registration of a hear signal is

specified in the header or the prototype of a global thread, as illustrated for accepts

specification, and will also be illustrated shortly. For task threads see task-hears. The

keyword for registering hear-signals is hears.

hear-side =#= hears-specification # hear-catch

hears-specification =#= hears (sig hear-specification-details)

hear-specification-details =#= < object-type , more-hear-types >

more-hear-types =#= object-type , more-hear-types

So, a hear-specification includes the signal, and optionally a comma-separated list of

types enclosed between the symbols <>. The types, object-type, must have been defined

previously.

After the following rules we will illustrate the semantics of tell-hear signals. Now we

need to know how to catch a hear signal.

hear-catch =#= hear ? hear-details

The keyword for catching a hear-signal is hear instead of signal as for ordinary signals.

However, the operator is the same, the symbol ?. Furthermore, the expression is boolean

just as it was for ordinary signals.

Note. In the following rule the colon is needed only if hear-objects is present.

hear-details =#= sig : hear-objects

hear-objects =#= object , hear-objects

So, in addition to the signal to catch, a hear expression may include a list of comma-

separated objects. These objects must have been defined earlier.

For illustration, assume object_1 and object_2 of types type_1 and type_2 have been

defined. Furthermore, let _sig be a user-defined tell-hear signal.

An application named MyHearApp on a node at URL is started up. A thread of this

application has the following specification.

void HearThread(void)<thread> hears(_sig < type_1, type_2 >);

When the thread HearThread begins, before doing anything else it registers the signal sig

with Z47 Processor. The registration includes the types associated with this hear signal,

in this case type_1 and type_2.

Somewhere in the body of this thread we need to catch and serve the arrival of this signal.

So, we may have a piece of code as follows.

if (hear ? _sig : object_1, object_2)

// do something

endif;

Assume at some point in time the signal _sig eventually arrives. All hear signals arrive at

Z47 Processor. The Processor checks to see if such a signal with exact types has been

registered. If not it will reject the signal and inform the sender. Otherwise, it will accept

and record the signal along with objects sent with the signal.

Eventually the thread HearThread gets its time slice. If there is a signal waiting for the

thread, and we reach the above code, Z47 delivers the signal and the hear-expression

becomes true. Z47 also copies object_1 and object_2 to the context of the thread, and

removes the signal from its queue. At this point object_1 and object_2 are exactly what

the sender included in its tell statement, discussed next.

Somewhere in the universe, an application called MyTellApp begins execution on a Z47

Processor. At some point in this process we meet the following code.

tell <- _sig $ URL , MyHearApp : object_1, object_2;

Z47 Processor initially sends the signal _sig, the name of the process MyHearApp and

the types of objects to the node at URL. If the receiving Z47 at URL rejects the signal, it

raises an exception. Otherwise, Z47 packages object_1 and object_2 in binary and sends

it to the receiving Z47 at URL, and moves on to the next statement.

Note that MyHearApp at URL can later send a tell-hear signal to the node executing the

application MyTellApp. Thus, two processes can engage in an asynchronous

communication transferring complex data to one another in binary, without blocking.

Class

Note. In this revision we only present main features of Z++ as they differ from C++.

Especially, the semantics of task for threading, and frame for GUI are not illustrated.

Moreover, the semantics of various Z++ linkage mechanisms are only briefly discussed.

class-definition =#= class-kind class-name class-specs derivation class-details end ;

class-kind =#= class # struct # task # frame

Note. An instance of task is created in a new thread. The type constructor frame is for

Graphical User Interface (GUI) implementation.

class-specs =#= frame-canvas-specs # linkage-specs

frame-canvas-specs =#= := canvas-identifier

Notes. A canvas looks like a structure, and is generated by tools for creating GUI.

However, a frame is a Z++ type that manipulates the canvas associated with it.

Graphic-related rules will be presented in future revisions.

linkage-specs =#= language-linkage # module-linkage < execution-location >

language-linkage =#= “ language “ = CppLibrary-name

Notes. The only language currently accepted is C++. CppLibrary-name is path to a C++

dynamic library (not a URL).

For all C++ libraries in a Z++ program, the compiler creates a C++ connector as a

dynamic library that the virtual processor uses. The name of this connector library can be

set by the rule: extern “C++” = “user-defined-name”.

module-linkage =#= = ZppModule-name # = ZppModule-URL

Note. ZppModule-name is the path to reach the program on the local machine.

ZppModule-URL is the URL to reach a Z++ program on a remote machine. The URL

must start with “Zpp://”. The Z++ virtual processor currently uses port 1011.

execution-location =#= local # remote

Note. Default is local. When local is specified, the remote module is downloaded to the

local machine and executed there. Specifying remote causes the remote module to

execute on the remote machine. Z++ virtual processor performs the RPC transparently.

derivation =#= : derivation-sequence

derivation-sequence =#= derivation-control derivation-item , derivation-sequence

derivation-control =#= public # private

Note. Default is public.

The term virtual is not a Z++ keyword. Instead of virtual base, the Z++ compiler uses

depth-first search to resolve ambiguity.

class-details =#= Z++ Extension

Notes. Since Z++ extends C++, for the first revision of this document, we will only

present extensions. However, the following corrections are also done to C++.

Static. The term static is not used in Z++. However, static members of C++ are same as

common members of Z++, with corrections to C++. There are no static methods in Z++.

The methods to manipulate a common member are called authorized methods for that

member.

A common member is initialized the same way as a static member is initialized in C++.

Virtual. The C++ keyword virtual is not used in Z++. All methods that can be virtual are

in fact virtual without the need to use the keyword. However, the Z++ compiler

determines when to make a polymorphic call, and when to perform static binding.

Reference. A member of a class cannot be declared as a reference to another object.

Pointers are supported just as C++. However, the semantic of reference is not identical to

that of a pointer.

Privacy. It is not possible to return the address, or a reference to a non-public member of

a class. However, it is allowed to return a const reference to a non-public member. Using

the casting mechanism to remove the const, one can finally achieve returning a plain

reference to a non-public member. But how can several deliberate steps be the result of

an accident? Nevertheless, in the future the Z++ compiler may be able to trap most of

these abuses.

Invariants. A Z++ class can have invariants. Invariants for a class are tested at end of

public methods of class (transparently).

The semantics is that, the specified action will be taken when the condition of invariant

becomes false. The action could be raising an exception, or calling a method (trigger).

Z++ Extensions =#= common-member # class-invariants

class-invariants =#= exception-invariant # trigger-invariant

exception-invariant =#= invariant (boolean-expression) exception-literal

Note. The exception will be raised when the boolean-expression becomes false.

trigger-invariant =#= invariant (boolean-expression) function-call

Note. The call will be made when the boolean-expression becomes false. The call must

be to a none-public method of the class.

common-member =#= common member-declarator : authorized-methods

Notes. Authorized methods of a member are the only methods that can modify the

member. All methods can access a common member.

A common member cannot be public. A common member is initialized the same way as

it is done in C++. However, unlike C++ accessing and manipulating a common member

can only be done through instances of the class (as opposed to global static method).

For now we leave member-declarator vaguely to mean a C++ member declaration.

authorized-methods =#= method-prototype , authorized-methods

Note. The non-terminal method-prototype in this context is a simple form of prototype to

identify the method. In particular, the prefix-specifications like inline, or tail

specifications like const are not allowed.

Note. A private or protected member can be made visible for read access only. A

visible member does not need a method to return its value.

class-member =#= member-declarator < visible >

Task

Note. Differences between a task and a class are as follows.

An instance of a task is created in a new thread. That is, first a new thread is created and

then the instance of task is created in this thread. The thread is destroyed when the

instance goes out of scope, or in case of a dynamic instance when the task object is

destroyed.

Calls to public methods of a task object are queued (by the Z47 Processor). The methods

are executed when the task thread receives its time slice.

Remark. A task object is destroyed after it services all requests in its queue.

Note. When a task is derived from other tasks, at elaboration each base task object is

created in its own thread. Thus, an instance of a task could be multi-threaded.

Note. Each task data member of a task is created in its own thread. This also means an

instance of a task could be multi-threaded.

Remark. In general, whenever a class could be used, one could also use task instead. In

particular, the syntax for a task template is identical to a class template.

Task Idler

Task idler is a private method that cannot be called directly. The idler’s prototype is

similar to that of destructor, except the symbol ~ is replaced with @.

A task object executes its idler whenever there are no requests waiting in its queue,

nor the task object is responding to signals.

Task Signal Handlers

Task signal handlers are private methods that cannot be called directly. Instead, task

object invokes its handlers as their specified signals arrive. The syntax for a handler

prototype is as follows.

void handler_name(void)<signal_name>;

That is, the return and the signature are void. The prototype name is followed by the

signal for the handler, within brackets <>. The definition of a handler does not need

the signal specification.

The prototype for a handler for a hear-signal is illustrated below.

Task accepts and hears specifications

Specifications of accepts for entire signals and hears for tell-hear signals are done in the

body of the definition of a task type, just like task invariants. Here we illustrate the

specifications. See rules for accepts and hears.

Suppose the following specification is done in the definition of a task.

accepts(_sig1);

When an instance of this task is declared, _sig1 is registered as an entire signal. This

means, all instances of this task type will in fact receive that signal whenever it is

generated. Therefore, all instances will invoke their associated signal handler to serve the

signal.

Now suppose the following hears specification is done in the definition of a task type.

hears(_sig2 < type_1, type_2 >);

At declaration of an instance of this type the signal _sig2 along with its types will be

registered for this instance. However, note that tell-hear signals are not entire. That means

if several instances of this type are created, only one instance at any one time will catch a

generated hear-signal. Just which instance will serve the signal cannot be determined.

The specification of a handler for a hear-signal requires objects to receive the data sent

along with the signal. This is only necessary if the signal actually carries data, of course.

The code below illustrates the prototype of a handler for _sig2.

void HearHandler(void)<_sig2 : object_1, object_2>;

The objects, object_1 and object_2 must be members of the task, of types type_1 and

type_2.

Frame

A frame is analogous to a class. However, frame is specifically for object-oriented

graphical user interface (GUI). In order to illustrate the use of a frame, we begin with the

notion of canvas.

A canvas is generated by, the GUI-Maker tool in a header file. Below is an example of a

canvas.

canvas MyCanvas

 button Done;

 label Name;

 checkbox One;

 radiobutton First;

 combobox Choices;

 field Text;

end;

The strings, Done, Name etc. are strings that appear on the GUI objects, like button,

whenever applicable. The same strings, though, are used in handling events associated

with those objects, as illustrated later in this section.

The drawing of a canvas is the responsibility of Z47 Processor. In order to use the canvas

we associate it to a frame, using the association operator := as follows.

frame MyFrame := MyCanvas

 // members

public:

 // constructors, methods, etc.

 $MyFrame(interfaceEventType&); // instinct method

end;

A frame has an additional special method, namely its instinct method. The instinct

method has the same name as the frame, but its name is preceded with the dollar sign.

This is similar to a destructor except the symbol ~ is replaced with $.

The type of argument to the instinct method is a structure defined in a system header file.

Two of the members of this structure are of interest, namely the member ‘entity’ and the

member ‘Event’. We will see their use in defining the body of the instinct method.

It is the responsibility of the Z47 Processor to invoke the instinct method of a frame and

to pass GUI events, such as mouse-click, to it. The engineer writes the body of the

instinct method to deal with events, as illustrated below. Thus, the instinct method is

object-oriented form of an input wait loop.

Below is an example of how the body of an instinct method is defined. In particular,

observe the use of the members ‘Event’ and ‘entity’ of the argument passed to the instinct

method. These are set by, the Z47 Processor when it invokes the instinct method.

MyFrame::$MyFrame(interfaceEventType& e)

 switch(e.Event) // do a switch on the type of event

 case _IES_Draw_Signal:

 case _IES_Erase_Signal:

 case _IES_Mouse_Click_Signal:

 select(e.entity) // for each event, do a select on GUI objects

 case Done:

 case One:

 case Choices:

 endselect;

 endswitch;

end;

Observe that the labels of select statement are the names of GUI entities as they appear in

the canvas. The signals are defined in a system header file. The basic idea is to switch on

the arrived event. Then, for each event of interest, do a select on names of GUI objects

that you intend to manipulate. We have not shown any code except the skeletal form of

the body of an instinct method.

Z++ GUI operations are platform independent, and are illustrated in other documents

where GUI objects are discussed.

Union

Note. Z++ unions are same as C++ with following differences.

Data members of union can only be pointers or numeric, char, int, double etc.

Union is a type constructor and must therefore have a name. Unnamed unions hidden in a

class are not supported.

Note. Just as in C++, an instance of a union allocates one slot for all its data members.

Note. As in C++, unions cannot be derived. All data members and methods of a union

are public.

Method Prototype

method-prototype =#= prefix-specs prototype tail-specs ;

prefix-specs =#= inline # external

Notes. The keyword inline has same semantics as in C++.

An external method is Z++ specific. The Z++ compiler generates code for the body of an

external method. The simple view is that an external method is the entry point of a

module that the class being defined is representing in the context of current program.

The non-terminal prototype is to be taken for a simple C++ function prototype until

future revisions. The underlining indicates that all items on the right of the following rule

are optional, while all may be present simultaneously.

tail-specs =#= const cast exceptions constraints

Notes. A const method has the same semantics as in C++.

The semantics of cast is same as C++ explicit (which is not a Z++ keyword). The

keyword cast is also used for all forms of casting in Z++, instead of multiple C++ forms

of casts.

exceptions =#= throws(exception-list)

Note. The Z++ compiler uses the list of exceptions for throws in its verification that all

raised exceptions are eventually handled.

exception-list =#= exception-literal , exception-list

constraints =#= { constraint-sequence }

Notes. The semantics for a constraint is that when the condition of the constraint

becomes false, the specified action will be executed. Note that constraint statements are

enclosed between braces. Definitions of method-bodies are not allowed within the

definition of a class.

Constraints of a method are tested prior to executing the code of the method.

constraint-sequence =#= constraint-item ; constraint-sequence

constraint-item =#= exception-constraint # trigger-constraint

exception-constraint =#= (boolean-expression) exception-literal

Note. When boolean-expression becomes false, specified exception will be raised.

trigger-constraint =#= (boolean-expression) function-call

Note. When boolean-expression becomes false, specified call will be made. The call must

be made to a private method of the class.

Global Function Prototype

function-prototype =#= global-prefix-specs prototype global-tail-specs ;

Note. The non-terminal prototype is to be taken for a simple C++ function prototype until

future revisions.

global-prefix-specs =#= inline # entry

Notes. The keyword entry is Z++ specific. A function specified as entry is called a

module entry-point.

A Z++ program can have any number of entry-points, but must have at least one.

A Z++ program is also a module (component) and can be used in composing larger

programs. Thus, there is no distinction between a program and a component.

global-tail-specs =#= global-thread exceptions

Note. The exceptions item is the throws specification as shown for methods. The

underline indicates that it is optional.

global-thread =#= < thread disengage-list > thread-tail-specs

Note. The Z++ virtual processor delivers the signals in a disengage list to the thread. For

instance, when a server thread is blocked on a socket accept(), upon arrival of the signal

the virtual processor will disengage (unblock) the thread.

disengage-list =#= : disengage-signals

disengage-signals =#= signal-literal , disengage-signals

A global thread can registers entire and tell-hear signals. The right side of the following

rule gives two hyperlinks to where the rules are defined. Both specifications can be

present for a thread.

thread-tail-specs =#= accepts-specification hears-specification

Note. An entry can have accepts-specification for registering entire signals.

Template

Notes. Z++ provides a pattern construct for specifying permissible types for instantiating

a parameterized (template) type.

The C++ template construct is slightly extended to allow attaching a pattern to a type

parameter.

template-construct =#= template-tag # template-pattern

template-tag =#= template < template-parameters >

Notes. A template-tag is followed by a class, method or function definition. The scope of

a template-tag is the entity following it.

The definition of an entity following a template-tag may use a template parameter

anywhere a type can appear.

When defining a template class, Z++ does not require the use of template parameters as

part of name of class. For instance, when defining My_Class < U, V > the class itself is

referred to as My_Class in the body of the definition.

template-parameters =#= type identifier : pattern-identifier , template-parameters

Notes. The term type is a Z++ keyword. The identifier following the keyword type is the

name of type parameter.

A pattern-identifier is the name of a previously defined template-pattern.

template-pattern =#= pattern template < parameter > pattern-details end ;

parameter =#= identifier

Note. The parameter is used in pattern statements, below.

pattern-details =#= pattern-identifier pattern-statements

pattern-statements =#= pattern-type-specs # pattern-method-specs

Note. A pattern can either list the types that can be used to instantiate a template

parameter, or the methods that the instantiating type must define.

pattern-type-specs =#= parameter : type-sequence ; pattern-type-specs

Note. The above rule lists the permissible types that can instantiate a template parameter.

type-sequence =#= type-identifier , type-sequence

pattern-method-specs =#= plain-prototype # parameter-prototype # wild-prototype

Note. The above rule specifies the public methods that a type must define so it can be

used to instantiate a template parameter.

plain-prototype =#= See note, below.

Note. This is an ordinary function prototype, without the use of wild substitution

mechanisms. The instantiating type must define a method with exact name and signature.

Note. A constructor prototype is specified with the parameter identifier used for name of

constructor. For instance, T(string) is a constructor taking a string by value for its

argument, where T is the template pattern parameter identifier.

parameter-prototype =#= See note, below.

Note. The parameter identifier, such as T acts like a wild type. The compiler will match

the prototype with a similarly named method prototype and exact signature except for

the types where the parameter identifier is seen.

wild-prototype =#= See note, below.

Note. When the name of a prototype is the symbol ? (question mark), the compiler

ignores the prototype name and only matches its signature. In addition, the signature can

include the parameter identifier.

Namespace

Notes. Z++ namespaces can be derived from one another (multiple-inheritance).

A namespace, like a class, can have private, protected and public sections.

The public section of a namespace is what a namespace exports.

The definition and the implementation of a namespace can be separated.

namespace-statement =#= space-definition # space-implementation # space-using

space-definition =#= protected namespace-head namespace-detail endspace ;

Notes. A protected namespace can only be used as a base in a derivation. It cannot be

referenced directly.

namespace-head =#= namespace namespace-name

namespace-detail =#= derivation statements

Note. Namespace derivation is identical to class derivation.

space-implementation =#= implementation implementation-details endspace ;

Notes. The implementation statement allows separating the definition of a namespace

from its implementation, in a manner similar to separating the implementation of a class

from its definition.

implementation-details =#= namespace-identifier statements

Note. Statements inside the implementation of a namespace are usually the

implementation (definition) of methods for classes defined in the namespace.

space-using =#= open-namespace # close-namespace

Note. Z++ allows explicit ending of the scope of a namespace.

open-namespace =#= using namespace namespace-scopes namespace-entity ;

Note. This statement is identical to that of C++ for starting the scope of a namespace.

close-namespace =#= endusing namespace namespace-scopes namespace-entity ;

Note. This statement is Z++ specific. It explicitly ends the scope of a namespace.

namespace-scopes =#= namespace-identifier :: namespace-scopes

namespace-entity =#= namespace-identifier # namespace-identifier :: entity

Note. An entity is an object or function in public section of a namespace.

Travel statement for Strong Mobility

Notes. Z++ travel statement is an abstraction for the notion of strong mobility. An agent

is a Z++ component, which includes one or more travel statements.

The travel statement can appear in any context in an entry point of an agent.

The semantics is that, upon execution of a travel statement, the agent terminates itself at

the local node. The agent then begins execution at the statement following the travel

statement, at the destination node.

The state of the agent is transferred to the destination node.

The destination in the following rule is the IP address of the node to reach.

travel-statement =#= travel destination ;

Notes. The travel statement may raise exceptions while sending the agent to its

destination. Should an exception occur the agent will not be sent to the designated

destination. Instead, the execution of the agent will continue at the local node. This

allows catching exceptions resulting from the execution of the travel statement.

The states of global objects are recovered to their initial startup state at destination.

However, states of objects in an entry point that executed the travel statement are

preserved. Thus, if you wish to preserve the state of a global object assign it to a local

object before travel, and recover it after travel.

Database SQL Statements

Z++ database statements are confined to Data Manipulation Language (DML) of SQL for

interaction with an existing database. Z++ statements resemble their SQL counterparts.

However, Z++ statements are object-oriented in nature. Furthermore, Z++ statements

handle database identifiers for tables and fields, as well as Z++ objects seamlessly.

Database operations require establishing a session, which includes connecting to the

server and logging in. One then needs to end the session. These operations have been

abstracted away through declaring a database object. At elaboration a session is

established, which terminates when the object goes out of scope.

The Z++ type of database object is defined in the system include file database.h. All

operations are implemented in the standard static library. However, beyond a plain

declaration, there is no need to be aware of the details of the methods that the database

system type defines. All methods are used internally by, the Z++ compiler.

In the statements presented in the next section, a database-object refers to an instance of

database class in the include file database.h, that one declares before making a query. The

declarations require standard arguments, as shown below.

databaseType Dbase(IP-address, port, database-name);

databaseUserType Duser(Dbase, user-name, password);

The first declaration provides the data needed for the second declaration. It is the second

declaration of type databaseUserType, which the Z++ database statements use. A
session begins with the second declaration, as well.

1. The Model

Generally, the purpose of executing the select statement is to receive a set of records from

a database. An object-oriented approach to collecting a set of objects is to instantiate a

container with the type of such records. Then, the records are inserted into the container

using an instance of the record-type by which the container was instantiated. We refer to

the container instantiator as catalyst.

The process of insertion into the container involves copying each database record to the

catalyst. We refer to this process as mapping a database record to its object image. The

mapping is defined by a comma-separated sequence of terms, as shown below.

Table-name.Field-name< catalyst-member >

The name of table is followed by a dot, and then the name of a field. This is followed by

the name of a member, enclosed in <>. The catalyst-member is the image of mapping.

That is, the compiler will copy the field value to the specified member.

2. Database Statements

database-stmt =#= command argument mapping body tail ;

command =#= databaseSelect # databaseInsert # databaseRemove # databaseUpdate

arguments =#= < database-object , catalyst -type : table-list >

database-object =#= instance of Z++ library class

catalyst-type =#= user-defined type for mapping

table-list =#= database-table-name , database-table-name

Note. Only select statement can use a list of table names. The other three statements only

use a single table, after the colon.

mapping =#= database-field < image > , database-field < image >

database-field =#= table-name . field-name

image =#= catalyzer-member-name

body =#= set-expression where-expression

Notes. Set-expression is permissible for update statement, only. On the other hand, insert

statement cannot have a where-expression.

Set and where expressions are similar to their SQL syntax and semantics. In addition,

these expressions can include literals, as well as Z++ objects and expressions.

A Z++ expression can be as complex as desired. The only syntactic requirement is to

enclose the expression between curly brackets {}.

The logical and relational operators must be those of Z++, which are basically the same

as the SQL operators.

tail =#= select-tail # catalyst-object

Note. Unlike select, the tail for insert, remove and update is just the catalyst.

select-tail =#= container-object , container-method

Note. Container object is an instance of a template container, such as a list, that the select

statement will populate.

Container method is the identifier for the method that select must use in populating the

container instance. For overloaded methods and operators, their prototype serves as an

identifier.

3. Database Exceptions

The following exceptions could be raised when declaring a database object, i.e. an

instance of databaseUserType (discussed earlier in the introductory part).

_EXCEPTION_DATABASE_UnsupportedDatabaseKind

_EXCEPTION_DATABASE_LibraryInitializationFailed

_EXCEPTION_DATABASE_ConnectionToServerFailed

The following exceptions can occur when carrying out an SQL statement. The first three

exceptions are related to the select statement. The fetch exception could also occur when

executing an explicit fetch-statement.

_EXCEPTION_DATABASE_SelectQueryFailed

_EXCEPTION_DATABASE_InsufficientMemoryForQueryResult

_EXCEPTION_DATABASE_FetchFailed

_EXCEPTION_DATABASE_InsertRequestFailed

_EXCEPTION_DATABASE_UpdateRequestFailed

_EXCEPTION_DATABASE_RemoveRequestFailed

Atomic Sequence

atomic-sequence =#= atomic atomic-body endatomic ;

Notes. The purpose of an atomic section is to ensure that a thread performs all the

statements in the specified section, without interruption.

When a thread enters an atomic section, no other thread is allowed to run until the thread

leaves the atomic section.

An atomic section is a scope, meaning that the objects created within the block will be

destroyed when the thread’s execution leaves the atomic section.

An atomic section is illustrated below.

atomic

 // body of atomic section

endatomic;

Note. As explained in fundamental types, mutex is a Z++ fundamental type for

constructing critical sections for using shared resources.

Below is an example for quick reference.

mutex m; // create a mutex in this scope

m++; // lock the mutex

m--; // unlock the mutex

Debug Break and Block

Z++ debugging statements in this section are part of the language, not the preprocessor.

However, the compiler ignores these statements in Release mode, and builds the

application without them. There is no need for preprocessor conditional statements,

which require setting and unsetting macros, frequently forgotten.

debug-statement =#= debug-section # break-statement

A Z++ debug section is a scope that is only compiled in debug mode. You can create

objects in the debug section as you need, and they will be destroyed as execution leaves

the debug section.

debug-section =#= debug debug-body enddebug ;

Below is an illustration.

debug

 // debugging code in this scope

enddebug;

The break statement does not terminate the execution of a program in debug mode.

Instead, when its argument becomes false the execution stops at that point as if there was

a breakpoint set by user.

break-statement =#= break (boolean-expression) ;

